Is inflation targeting operative in an open economy setting?

Esteban Pérez Caldentey*
Economic Commission for Latin America and the Caribbean (ECLAC) and the United Nations

Matías Vernengo*
Central Bank of Argentina and University of Utah, USA

The justification for inflation targeting rests on three core propositions. The first is called ‘lean against the wind,’ which refers to the fact that the monetary authority contracts (expands) aggregate demand below capacity when the actual rate of inflation is above (below) target. The second is ‘the divine coincidence,’ which means that stabilizing the rate of inflation around its target is tantamount to stabilizing output around its full employment level. The third proposition is that of stability. This means that the inflation target is part of an equilibrium configuration which generates convergence following any small disturbance to its initial conditions. These propositions are derived from a closed economy setting which is not representative of the countries that have actually adopted inflation targeting frameworks. Currently there are 27 countries, 9 of which are classified as industrialized and 18 as developing countries that have explicitly implemented a fully fledged inflation targeting regime (FFIT). These countries are open economies and are concerned by the evolution of the external sector and the exchange rate as proven by their interventions in the foreign exchange markets. We show that these three core propositions and the practice of inflation targeting are inoperative in an open economy context.

Keywords: inflation targeting, open economies, exchange rate

JEL codes: E42, E58, F41

1 INTRODUCTION

A fully fledged inflation targeting regime (FFIT) is generally defined as a framework consisting in the public announcement of numerical targets for the inflation rate with the explicit acknowledgement that a low and stable rate of inflation is the main objective of monetary policy. The framework also requires a commitment to transparency and accountability in the monetary policy decision-making process and in its results.

Inflation targeting has gained prominence as a monetary strategy since the late 1990s (see Roger 2009). Currently there are 27 countries, 9 of which are classified as industrialized and 18 as developing countries that have explicitly implemented a fully fledged inflation targeting regime (FFIT). Inflation targeting is presented by its proponents as a coherent and flexible approach to monetary policy differing from the more rigid

* The opinions here expressed are those of the authors and may not coincide with those of the institutions with whom they are affiliated.
ones based on monetary rules or fixed exchange rates and proving to be a better and more successful alternative in the control of inflation.

In this paper we argue that the raison d'être and, ultimately, the validity of a fully fledged inflation targeting regime is founded on three core propositions. The first states that the central bank follows a ‘lean against the wind’ strategy in the implementation of monetary policy. This refers to the fact that, provided the output gap is the policy variables, the monetary authority contracts aggregate demand below capacity when the actual rate of inflation is above target.¹

The second one is an equivalency proposition termed ‘the Divine Coincidence’.² This means that stabilizing the rate of inflation around its target is tantamount to stabilizing output around its full employment level. The main implication is that the monetary authorities should worry about inflation.

The third proposition which follows from the previous two is that of stability. The inflation target is part of an equilibrium configuration of an economy derived from a Taylor rule, a New Keynesian Phillips curve and a standard aggregate demand function. Moreover, the economy will converge towards its equilibrium position following any small disturbance to its initial conditions.³

We also show that these three core propositions follow from a closed economy model that is hardly representative of the countries that have adopted inflation targeting and which are, by most criteria, open economies. Their concern for external conditions is illustrated by their active intervention in the foreign exchange markets. In line with the evidence presented, once the inflation targeting framework is modified to include the open economy dimension in a meaningful sense, we show that these three core propositions are inoperative theoretically and empirically and that the practice of inflation targeting leads to fundamental policy dilemmas. This presumes the utilization of the conventional model, often referred to as the New Consensus, which has several significant flaws (see, for example, Arestis and Sawyer 2008; Arestis 2009).

The paper is divided into six further sections. Section 2 sketches the basics of inflation targeting with a focus on fully fledged inflation targeting (FFIT). Section 3 derives formally the core propositions of inflation targeting using a quadratic loss function subject to the structure of the economy encapsulated in a New Keynesian Phillips curve and an IS function. Section 4 underscores the importance of the external sector for the economies that have adopted FFIT and shows empirically that these countries actively intervene in the foreign exchange market. Section 5 introduces the external sector in the inflation targeting framework and shows the inoperative character of the core propositions. Section 6 illustrates this point empirically for all 27 economies in the sample. Section 7 concludes.

2 A BASIC SKETCH OF INFLATION TARGETING

Inflation targeting is traditionally defined as a monetary policy strategy framework consisting in the public announcement of numerical targets for the inflation rate, acknowledging that price stability is the fundamental goal of monetary policy and

¹. See Clarida et al. (1999).
². See Blanchard and Gali (2005).
³. See Setterfield (2006); Rochon and Setterfield (2007). Note that if the notion of a natural rate, which has significant logical problems and not much evidence to favor it, is abandoned, then the main conclusions about leaning against the wind and the divine coincidence do not hold.
a firm commitment to transparency and accountability. Within the context of this definition, numerical targets can refer to a point inflation rate, a range or a point with a tolerance range. The inflation rate can refer to the headline consumer price index (CPI), as is the standard case for most developing economies, or to the core CPI.

Transparency means that the monetary authorities must communicate their targets, forecasts of inflation, decisions on monetary policy, and the motivation for their decisions. Finally, accountability here means that the monetary authorities are responsible for attaining the announced objectives and subject to ‘public scrutiny for changes in their policy or deviations from their targets.’

The above definition typifies the components of a fully fledged inflation targeting regime (FFIT). There are currently 27 countries that have announced that they are operating on an FFIT. Among these, 18 (or 67 percent of the total) are developing and 9 (or 33 percent of the total) are developed countries. The greater majority of developed countries adopted inflation targeting in the 1990s. For their part, developing countries implemented inflation targeting regimes mainly in the past decade (see Table 1).

In practice, FFITs do not, as a rule, follow ‘a firm commitment to transparency and accountability.’ The evidence indicates that a small majority (66.7 percent of total FFITs) abide by the transparency criterion in so far as the respective central banks publish the minutes of the monetary authorities. Still, this means that 33.3 percent do not. In terms of accountability, only in 25.9 percent of the country cases do the central banks provide an open letter explaining their policy outcomes. However, the great

4. Bernanke et al. (1999, p. 4) define inflation targeting as a: ‘framework for monetary policy characterized by the public announcement of official quantitative targets (or target ranges) for the inflation rate over one or more time horizons, and by the explicit acknowledgement that low, stable inflation is monetary policy’s primary goal.’ According to Mishkin (2004), inflation targeting comprises five distinct but interrelated aspects: (i) the public announcement of medium-term numerical targets for inflation; (ii) an institutional commitment to price stability as the primary goal of monetary policy; (iii) an information inclusive strategy in which many variables, and not just monetary aggregates or the exchange rate, are used for deciding the setting of policy instruments; (iv) increased transparency of the monetary policy strategy through communication with the public and the markets about the plans, objectives, and decisions of the monetary policy authorities; and (v) increased accountability of the central bank for attaining its inflation objectives.’ Svensson (2007) provides a similar definition.

5. Note that price stability is not an easy concept to define. It is defined generally in terms of the demand for money – that is, a situation where agents do not change their demand for money in response to price changes. Angeriz and Arestis (2007) quote Greenspan (1988) on price stability: ‘a situation in which households and businesses in making their savings and investment decisions can safely ignore the possibility of sustained generalized price increases or price decreases.’ Clarida et al. (1999, p. 1669) refer to price stability as the inflation rate at which inflation is no longer a public concern. According to these authors, an inflation rate between 1 and 3 percent meets this definition and is perhaps the explanation for the 3 percent mean inflation target in the case of Chile.

6. Svensson (2007, pp. 2–3) states: ‘In several countries inflation-targeting central banks are subject to more explicit accountability. In New Zealand, the Governor of the Reserve Bank of New Zealand is subject to a Policy Target Agreement, an explicit agreement between the Governor and the government on the Governor’s Responsibilities. In the UK, the Chancellor of the Exchequer’s remit to the Bank of England instructs the Bank to write a public letter explaining any deviation from the target larger than one percentage point and what actions the Bank is taking in response to the deviation. In several countries, central-bank officials are subject to public hearings . . . and in several countries monetary policy is . . . subject to extensive reviews by independent experts.’
majority (70.4 percent of the total) have parliamentary hearings on monetary policy (see Table 2).

All countries, with no exceptions, have a time horizon to achieve their target inflation, illustrating the fact that they all practice ‘flexible inflation targeting’ as opposed to ‘strict inflation targeting.’ Flexible inflation targeting implies that the monetary authorities or the central bank do not have only a monetary objective (stabilizing inflation) but also have a real objective (stabilizing real output). As put by Svensson (2007, p. 1): ‘In practice inflation targeting is never “strict” inflation targeting but always
flexible inflation targeting, in the sense that all inflation-targeting central banks . . . not only aim at stabilizing inflation around the inflation target but also put some weight on stabilizing the real economy . . . implicitly or explicitly stabilizing a measure of resource utilization such as the output gap between actual output and “potential output”. The literature also refers to ‘flexible’ inflation targeting as pursuing stability of interest rates or of the variation of the exchange rate in an open economy.7

The adoption of ‘flexible’ inflation targeting entails pursuing a ‘gradualist’ approach to the achievement of monetary policy objectives. ‘Flexible’ inflation targeting and hence a gradualist approach to monetary policy is conceptually justified mainly on the grounds of uncertainty regarding: (1) the workings and current state of the economy; (2) the transmission mechanisms and policy parameters; and (3) the nature of external shocks as well. A gradualist policy can also contribute to buffer the effects on real variables caused by external shocks.

3 INFLATION TARGETING AND ITS CORE PROPOSITIONS

At a conceptual level, the inflation targeting framework is generally presented and analysed for a closed economy setting. More importantly, this closed economy context allows the derivation of the core propositions on which inflation targeting rests,

including the ‘lean against the wind’ feature, the occurrence of the ‘divine coincidence’ (that is, that ‘stabilizing inflation is equivalent to stabilizing output around its natural level’ (Blanchard 2006, p. 413)) and the stability properties, that make it such a desirable monetary policy from the point of view of the mainstream.

These three fundamental properties can be derived from ‘first principles,’ by assuming that inflation targeting is an optimal targeting rule derived from an explicit objective function. More precisely, central banks solve a ‘standard optimal control problem, choosing the path of the price level that minimizes a quadratic loss function subject to the constraints imposed by the linear structure of the economy’ (Cecchetti and Kim 2006, p. 176). Formally the loss function is specified as:

\[L = (y_a - y_n)^2 + \beta (\pi_t - \pi^T)^2 + \gamma (i_t - i_{t-1})^2 \]

Where \(y_a, y_p \) = actual and potential output; \(\pi_t, \pi^T \) = actual and target inflation rates, and \(i_t, i^T \) are the actual and target short-term nominal interest rates (that is, the monetary policy rates).

According to the logic imbedded in Equation (3.1), a deviation of the rate inflation from its target or of output from its natural level produces a loss of utility for the central bank. The parameter \(\beta \) and its particular value characterizes the degree to which a central bank is inflation-averse. If \(\beta = 1 \) (>1) the central bank places the same (greater) weight on output fluctuations as on the deviation of inflation from its target. The greater is the parameter \(\beta \), the greater is the aversion towards inflation. To the extent to which the control of inflation (which in this case means the reduction of the variance of the actual rate of inflation relative to its target point or range) is the hierarchical objective of the central bank (Svensson 2004), \(\beta > 1 \) by definition.

The loss function (Equation (3.1)) is minimized subject to the ‘structure of the economy,’ captured by a New Keynesian Phillips curve (\(\pi_t = E_t \pi_{t+1} + \alpha (y_a - y_n) \)) and a standard aggregate demand curve (\(y^g_t = -\phi (i_t - E_t \pi_{t+1}) + E_{y^g_{t+1}} \)), where \(y^g_t \) is the output gap. This is stated formally as follows:

\[\text{Min}_{\pi_t, i_t} E_t \sum_{t=0}^{\infty} [\beta^t (\pi_t - \pi^T) + \gamma (i_t - i_{t-1})] \]

where \(\beta \in (1, 0) \)

is the discount factor, subject to

\[\pi_t = E_t \pi_{t+1} + \alpha (y_a - y_n) \quad \text{(Phillips Curve)} \]

\[y^g_t = -\phi (i_t - E_t \pi_{t+1}) + E_{y^g_{t+1}} \quad \text{(IS Curve)} \]

8. The loss function includes an interest rate smoothing term \(\gamma (i_t - i_{t-1})^2 \) that captures the empirical fact that central banks adjust interest rates according to a smooth path capturing the fact that the policy rate moves in sequences of small steps, and that interest rate reversals are ‘infrequent.’ See Sack and Wieland (1999) and Amato and Laubach (2003). The quadratic nature of the loss function implies a symmetry in the weight placed on the deviations above and below targets for both inflation and output. As a result, the specification of the loss function suggests that since the central bank is concerned to the same extent by inflation and deflation, its reaction to both situations is also symmetric.
The first order conditions from the single period minimization of the objective function subject to both constraints are:

\[
\frac{\delta L}{\delta \pi_t} = \beta \pi_g^t - \lambda_1 = 0
\]

\[
\frac{\delta L}{\delta y_g^t} = y_g^t + \alpha \lambda_1 - \lambda_2 = 0
\]

\[
\frac{\delta L}{\delta i_t} = \gamma (i_t - i_{t-1}) - \lambda_2 \gamma = 0
\]

(3.5)

Where \(\lambda_1, \lambda_2 \) are the Lagrangean multipliers and \(\pi_g^t \) is the inflation gap.9

Using the first order condition and replacing it in the second order conditions and setting the second Lagrangean multiplier \(\lambda_2 = 0 \) yields the first important attribute of inflation targeting regimes, namely the ‘lean against the wind’ or countercyclical feature:

\[
y_g^t = -\alpha \beta \pi_g^t \quad \text{(Lean against the wind)}
\]

(3.6)

Equation (3.6) states that the minimization of the loss function and the optimal derivation of \(y \) for each value of the inflation rate is, in fact, equivalent to a negative relation between the output and the inflation gap (\(y_g^t, \pi_g^t \) respectively). This implies that when the actual rate of inflation is above its target (\(\pi_t > \pi_T \)), actual output is below its natural level (\(y_a < y_n \)). In other words, within the inflation targeting logic, a rate of inflation above its target implies that the monetary authorities must contract aggregate demand by raising interest rates. In a similar manner, a rate of inflation below its target implies that the monetary authorities must expand aggregate demand by decreasing interest rates. Monetary policy is by design counter-cyclical (Clarida et al. 1999). The extent to which monetary policy is counter-cyclical depends on the parameters \(\alpha \) and \(\beta \).

A second important result derived from the above analysis is the absence of a trade-off between the output and inflation gap, the so-called ‘divine coincidence’ (Blanchard and Gali 2005). More precisely, the specification of the loss function implies that both the stabilization of inflation and output are desirable goals and that there is no conflict between them. As inflation approaches its target, output approaches its natural level as well. In line with Equation (3.6), we imply that for any given values of \(\alpha \) and \(\beta \) the smaller is the inflation gap, the smaller will be the output gap.

\[
(y_a - y_a) = -\alpha \beta (\pi_t - \pi_T) \quad \text{and} \quad \pi_t \rightarrow \pi_T \Rightarrow y_a \rightarrow y_n \quad \text{(Divine coincidence)}^{10}
\]

(3.7)

9. In the derivation of the first order conditions we do not address the issue of commitment/discretion which has been of recent relevance to the inflation-targeting literature. When the monetary authorities do not have a commitment regarding the future path of inflation they practice discretion, and the above optimization problem is reduced to a period-by-period optimization. Within the logic of inflation targeting, when the central bank makes promises about future inflation (and thus acts under commitment), this has a positive effect on current inflation, since according to the literature – and also Equation (3.3) above – current inflation depends in part on future inflation. See Lam (2010).

10. At first sight, the ‘lean against the wind’ and ‘divine coincidence’ appear contradictory. According to the former, there is a trade-off between stabilizing output and inflation. The latter denies the existence of a trade-off. A way to make both views compatible is to argue that the
The obvious implication is that since inflation stabilization is the hierarchical and main objective of monetary policy, it is equivalent to stabilizing output. As put by Blanchard (2006, p. 3):

Stabilizing inflation also stabilizes the distance of output from first best—the welfare-relevant output gap. This is really an important result. It implies that central banks should indeed focus just on inflation, and we can sleep well at night. If they succeed in stabilizing inflation, they will automatically generate the optimal level of activity. Put another way, even if you do not care about inflation, but only about activity, you would still want the central bank to focus on inflation. Inflation targeting is an output-friendly rule.11

Finally, the third important attribute of inflation targeting is the property of stability, or more precisely that the inflation target is ‘part of an aggregate equilibrium configuration toward which the economy will return following any disturbance’ (Setterfield 2006, p. 657). In order to derive the stability attribute, the equation describing the reaction function of the central bank is required.

The reaction function can be obtained by manipulating the three first-order conditions from the central bank optimization problem. That is, from the first and third first-order conditions we obtain:

\[
\frac{\delta L}{\delta \pi_t} = \beta \pi_t^e - \lambda_1 = 0 \iff \lambda_1 = \beta \pi_t^e
\]

\[
\frac{\delta L}{\delta i_t} = \gamma (i_t - i_{t-1}) - \lambda_2 \theta = 0 \iff \lambda_2 = \frac{\gamma (i_t - i_{t-1})}{\theta}
\]

Then, substituting the value of both \(\lambda_1\) and \(\lambda_2\) into the second first-order condition, we get an equation for the rate of interest:

\[
\frac{\delta L}{\delta y_t^e} = y_t^e + \alpha \lambda_1 - \lambda_2 = 0 \iff y_t^e + \alpha \beta \pi_t^e - \frac{\gamma (i_t - i_{t-1})}{\theta} = 0
\]

\[
\iff i_t = i_{t-1} + \frac{\theta \alpha \beta}{\gamma} \pi_t^e + \frac{\theta}{\gamma} y_t^e
\]

‘lean against the wind’ applies to the short run while the ‘divine coincidence’ is applicable to the long run. This view finds its justification in Blanchard and Gali (2005), who argue that the divine coincidence applies in the absence of ‘trivial rigidities.’ This line of thinking implies that a positive inflation gap will result in actions tending to decrease the output below trend but that eventually output will converge towards its potential level. This is consistent with the stability proposition. Our empirical results on both properties apply to both long and short periods of time. Some countries have had FFIT in operation for roughly 2 decades, while for others its application has not surpassed a period of 10 years. In any case, according to our interpretation, the divine coincidence is a proposition that can be understood and tested in terms of variances: the smaller is the variance of the inflation gap, the smaller is the variance of the output gap.

11. Woodford and Giannoni (2003, p.3) also state: ‘The present theory implies not only that price stability should matter in addition to stability of the output gap, but also that, at least under certain circumstances, inflation stabilization eliminates any need for further concern with the level of real activity . . . the time varying efficient level of output is the same as the level of output that eliminates any incentive for firms on average to either raise or lower prices.’
Equation (3.9) is an optimal interest rate rule commonly known as a Taylor rule equation. It states that the difference between the actual real rate of interest from its natural level (\(r_i - r_n\) or \(r_g\)) is proportional to the output gap, or the nominal interest gap is proportional to the inflation and output gaps (\(\pi_g\) and \(y_g\) respectively).\(^{12}\) Accordingly, when the actual rate of inflation is equal to its target (\(\pi_i = \pi_T\)), and given the ‘divine coincidence’, the level of output is equal to its natural level (\(y_i = y_n\)); then the actual rate of interest is also at its equilibrium or natural level (\(r_i = r_n\)). This is exactly the sort of result that Knut Wicksell had suggested long ago.

The interest rate equation, together with the Phillips curve and the aggregate demand (IS) function, completes the system required to prove the stability property. This can be seen by rewriting the corresponding system composed of Equations (3.3, 3.4, and 3.9) as a system of differential equations:

\[
\dot{y} = -\varphi \dot{r} \\
\dot{\pi} = \alpha y_g \\
\dot{r} = \frac{\theta \alpha \beta}{\gamma} \pi_g + \frac{\theta}{\gamma} y_g
\]

(3.10)

Substitution of the interest equation (\(\dot{r}\)) into the output gap equation (\(\dot{y} = \dot{y}_g\)) reduces the system to two differential equations which can be expressed in matrix form as:

\[
\begin{bmatrix} \dot{y} \\ \dot{\pi} \end{bmatrix} = \begin{bmatrix} -\varphi \frac{\theta \alpha \beta}{\gamma} - \frac{\theta}{\gamma} \\ \alpha & 0 \end{bmatrix} \begin{bmatrix} y \\ \pi \end{bmatrix} + \begin{bmatrix} \frac{\varphi \theta \alpha}{\gamma} \beta (\pi^T + y_n) \\ -\alpha y_n \end{bmatrix}
\]

(3.11)

The stability of the system is provided by the Jacobian matrix. Since the determinant of the Jacobian matrix is positive (\(\varphi \alpha \theta / \gamma > 0\)) and the trace is negative (\(-\varphi \theta / \gamma < 0\)), the 2 \times 2 system is stable.

4 THE FFITS AS OPEN ECONOMIES

The economies that have formally adopted FFIT regimes are different in terms of size and development, productive structure, and export base. Nonetheless, they share one common feature. They have become increasingly open over time, since before the adoption of FFIT regimes. Figure 1 shows, for FFIT developed and developing economies, the composition of trade in GDP, weighted tariff rates, the participation of private financial flows in GDP and the degree of financial openness measured by the Chinn–Ito index, 10 and 5 years before and 5 and 10 years after the adoption of inflation targeting.

On average, 10 years prior to the adoption of a FFIT regime, the participation of trade (exports plus imports) in GDP for all economies included in our sample reached 56 percent. Ten years following the adoption of inflation targeting, it increased to 67 percent. For the same period, the weighted tariff rate declined from 8.2 percent.

12. Here we assume that monetary policy responds to the current inflation and output gaps. In some specifications, monetary policy responds in the first instance only to the inflation gap, and only in a second stage does it respond to the output gap.
Note: The Chinn–Ito is an index of openness in capital account transactions. The higher the value of the index, the greater the degree of openness of an economy to cross-border capital transactions.

Source: Authors’ own computations on the basis of World Bank (2013); Chinn–Ito (2013).

Figure 1 Real and financial indicators of the degree of openness of the FFIT economies (10 and 5 years before the adoption of inflation targeting and 5 and 10 years after) (exports and imports (X+M) as % of GDP, weighted tariffs rates, private capital flows as % of GDP and the Chinn–Ito index of financial openness)
to 5.6 percent. Similarly private financial flows which stood at 2.5 percent of GDP 10 years prior to the adoption of inflation targeting expanded to attain 3 percent of GDP 5 years after.

Finally, the degree of financial openness (Chinn–Ito index) rose for all economies in the sample after the instauration of FFIT regimes. In the case of developed countries, the standardized index measured on a scale from 1 to 100 took values of 53 and 83, 5 and 10 years prior to the adoption of the FFIT, attaining a maximum of 100 thereafter. For developing countries, the Chinn–Ito index had an average value of 3, at the time of the adoption of the FFIT, and 56 a decade after.

The fact that the FFIT economies are open economies in terms of trade and finance, and the broad majority of these are developing economies, underscores the importance of the exchange as a transmission mechanism of monetary policy and also of external shocks (Svensson 2000).

In a closed economy, the decisions of economic policy are transmitted through aggregate demand and the associated expectations channels. Changes in the rate of interest or even monetary aggregates directly impact on aggregate demand via changes in consumption, investment and imports. In turn, variations in aggregate demand impinge directly on the rate of inflation if the economy is at full employment, which is what the conventional model presumes with the notion of the ‘divine coincidence,’ or indirectly by altering the bargaining position of workers. In addition, changes in expectations can also have an effect on inflation ‘via wage and price setting behavior’ (ibid., p. 3).

In an open economy, the monetary policy transmission mechanism is more complex. Changes in the nominal exchange rate affect the rate of inflation directly through their effect on the price in domestic currency of imported final goods. At the same time, the rate of exchange has an influence on the cost of goods produced locally through changes in the domestic price of imported inputs.

Changes in the nominal exchange rate also operate indirectly on the rate of inflation. To the extent that a nominal exchange rate variation affects the real exchange rate, it alters the relative price of traded-to-non-traded goods, reinforcing the aggregate demand channel. An increase in the relative price of traded-to-non-traded goods (a devaluation in real terms), will make locally produced goods more competitive and will thus increase the incentives to shift resources towards the production of domestic goods. As a result, domestic absorption (internal demand) will increase, putting pressure on prices if the economy is close to full employment.

An additional transmission channel for the exchange rate is the balance sheet channel. Changes in the exchange rate affect the position in assets and liabilities of firms, households, and also of the government. The balance sheet channel can offset partly or completely the expansionary effects of a depreciation, depending on the importance of assets in foreign currency held by a different sector of the economy. A depreciation of the currency increases the stock of external debt as well as interest service and thus exerts a negative effect on aggregate demand. In other words, changes in the exchange rate may have a significant impact on income distribution and may turn out to be contractionary.

Moreover, the exchange rate also operates as a transmission vehicle for foreign disturbances and external demand shocks. This channel is relevant because of the high

13. Evidence suggests that interest rates affect housing investment, but do not have a major impact on private investment, which tends to respond to quantities rather than cost of capita measures. See, for example, Fazzari (1993).
degree of international integration among economies, and the strong economic dependence of developing economies on external markets and developed country resources. This transmission mechanism is even more significant depending on the extent to which the exchange rate behaves like an asset price (that is, ‘when it responds to potential capital gains or losses in forward markets’ (Eatwell and Taylor 2000, p. 63)).

According to the logic of inflation targeting, the level or value of the exchange rate should not be, in principle, a main concern for monetary policy. In fact, inflation targeting proponents argue that a flexible exchange rate regime is a ‘requirement for a well functioning inflation targeting regime.’ This view responds to the fact that in a world of full capital mobility, the monetary authorities cannot maintain an independent monetary policy and a stable exchange rate at the same time, the so-called Impossible Trinity or Trilemma. More importantly, since the main policy instrument, the rate of interest affects both the inflation rate and the exchange rate, worrying about the exchange rate would imply that the authorities are trying to manage two targets with one instrument.

Yet, in practice, due to the institutional openness of the economies that have adopted FFIT regimes, the importance of the exchange rate as a transmission mechanism and as a determinant of the level and composition of output, the value of the exchange rate matters. The central banks of FFITs are not indifferent to exchange rate movements and indeed intervene in foreign exchange markets.

This is illustrated in Table 3. It shows, on a country-by-country basis, before and after inflation targeting the reaction of foreign exchange reserves to changes in the real exchange rate (RER). This is captured by regressing the change in international reserves on the deviation of the real exchange rate from its trend.

It also shows, for the same periods and countries, the degree of foreign exchange market intervention. This is measured by the statistic (FEIS = foreign exchange intervention statistic):

\[
FEIS = \frac{\sigma_{\Delta ForexReserves}}{\sigma_{\Delta ForexReserves} + \sigma_{ExchangeRate}}
\]

where \(\sigma \) = standard deviation and \(\Delta = x_t - x_{t-4} \)

The FEIS ranges between 0, which reflects a pure float, to 1, which reveals that monetary authorities intervene to smooth out variations in the exchange rate. The FEIS was computed using both the real and the nominal exchange rate. As a benchmark value for the computations using the real exchange rate we use the value provided in Ostry et al. (2012), 0.73, which reflects the degree of intervention for emerging market economies that do not pursue an inflation targeting strategy and thus do not adhere in principle to a floating exchange rate regime.

The results show that all foreign exchange intervention statistics (FEIS) are positive and with a few exceptions significantly different from the 0.73 benchmark. All countries, whether developing or developed, intervene in the foreign exchange markets. On average, the exchange intervention statistic (using the real exchange rate) is 0.65 for the whole sample, 0.68 for developed countries, and 0.62 for developing economies. While, for the most part, the FEIS is lower in the period following the adoption of inflation, the differences between the FEIS before and after inflation targeting are

14. Note that the Trilemma does not apply to the Hegemonic country that holds the global reserve currency. Also, under certain circumstances, when the balance of payments constraint is not binding, developing countries are relatively free of the constraints imposed by the Trilemma.
Table 3 Foreign exchange intervention index and regression analyses between the change in international reserves (ΔRES) and the real exchange rate gap \((RER)_{t}^{g}\) for FFIT economies

<table>
<thead>
<tr>
<th>Country</th>
<th>FEIS (^\text{a}) Before FFIT</th>
<th>FEIS (^\text{a}) After FFIT</th>
<th>(ΔRER_t) Before FFIT</th>
<th>(ΔRER_t) After FFIT</th>
<th>AR(1) Before FFIT/ After FFIT</th>
<th>No. obs. Before FFIT/ After FFIT</th>
<th>(R^2) Before FFIT/ After FFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>0.79</td>
<td>0.73</td>
<td>1.78</td>
<td>−0.14</td>
<td>0.75(7.13)/</td>
<td>47/78</td>
<td>0.54/0.42</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.72</td>
<td>0.61</td>
<td>(2.01)</td>
<td>(−0.25)</td>
<td>0.66(15.05)/</td>
<td>73/53</td>
<td>0.83/0.77</td>
</tr>
<tr>
<td>Canada</td>
<td>0.88</td>
<td>0.67</td>
<td>(−0.46)</td>
<td>(0.13)</td>
<td>0.58(6.56)/</td>
<td>40/87</td>
<td>0.36/0.32</td>
</tr>
<tr>
<td>Chile</td>
<td>0.70</td>
<td>0.64</td>
<td>0.65</td>
<td>−0.08</td>
<td>0.82(12.33)/</td>
<td>74/52</td>
<td>0.69/0.52</td>
</tr>
<tr>
<td>Colombia</td>
<td>0.73</td>
<td>0.47</td>
<td>0.36</td>
<td></td>
<td>0.84(8.93)/</td>
<td>39/52</td>
<td>0.66/0.59</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>. . .</td>
<td>0.66</td>
<td>. . .</td>
<td>1.39</td>
<td>0.67(6.45)/</td>
<td>55</td>
<td>0.59/0.59</td>
</tr>
<tr>
<td>Ghana</td>
<td>0.52</td>
<td>0.83</td>
<td>0.02</td>
<td>−0.42</td>
<td>0.70(8.88)/</td>
<td>83/43</td>
<td>0.48/0.59</td>
</tr>
<tr>
<td>Hungary</td>
<td>0.78</td>
<td>(0.13)</td>
<td>−1.29</td>
<td>−0.10</td>
<td>0.82(10.77)/</td>
<td>54/41</td>
<td>0.65/0.36</td>
</tr>
<tr>
<td>Iceland</td>
<td>0.81</td>
<td>0.70</td>
<td>1.25</td>
<td>0.61</td>
<td>0.61(6.76)/</td>
<td>80/44</td>
<td>0.41/0.37</td>
</tr>
<tr>
<td>Israel</td>
<td>0.81</td>
<td>0.73</td>
<td>−0.81</td>
<td>−0.05</td>
<td>0.77(8.46)/</td>
<td>66/61</td>
<td>0.53/0.83</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.75</td>
<td>0.53</td>
<td>0.26</td>
<td>0.39</td>
<td>0.74(6.19)/</td>
<td>44/47</td>
<td>0.53/0.57</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.81</td>
<td>0.73</td>
<td>−2.95</td>
<td>1.82</td>
<td>0.44(2.82)/</td>
<td>35/91</td>
<td>0.34/0.61</td>
</tr>
<tr>
<td>Norway</td>
<td>0.84</td>
<td>0.71</td>
<td>−0.19</td>
<td>0.25</td>
<td>9.22(0.73)/</td>
<td>80/47</td>
<td>0.52/0.39</td>
</tr>
<tr>
<td>Philippines</td>
<td>0.82</td>
<td>0.72</td>
<td>0.52</td>
<td>1.27</td>
<td>0.60(6.56)/</td>
<td>83/43</td>
<td>0.35/0.79</td>
</tr>
<tr>
<td>Poland</td>
<td>0.34</td>
<td>0.60</td>
<td>0.03</td>
<td>1.38</td>
<td>0.84(13.34)/</td>
<td>72/35</td>
<td>0.71/0.63</td>
</tr>
<tr>
<td>South Africa</td>
<td>0.85</td>
<td>0.56</td>
<td>0.74</td>
<td>0.28</td>
<td>0.51(4.93)/</td>
<td>75/51</td>
<td>0.26/0.81</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.72</td>
<td>0.76</td>
<td>1.03</td>
<td>0.71</td>
<td>0.40(3.14)/</td>
<td>55/71</td>
<td>0.34/0.63</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.54</td>
<td>0.52</td>
<td>0.98</td>
<td>0.99</td>
<td>0.90(13.88)/</td>
<td>47/80</td>
<td>0.79/0.57</td>
</tr>
<tr>
<td>Notes: The FEIS columns include the computation of the statistics with the real and nominal exchange rate respectively. ** and * denote significance at the 95% and 90% level of confidence. An increase (decrease) in the real and nominal exchange rate refers to an appreciation (depreciation) of the national currency. All regression analyses included the standard diagnostics which are not presented for want of space. All regressions were checked for basic goodness of fit indicators. All computations were performed using quarterly data. Bold font in column 5 highlights the coefficients that are significant at the 95% level after the adoption of the FFIT. (^\text{a})FEIS = foreign exchange intervention statistic. (^\text{b})Source: Authors’ own computations on the basis of IMF (2013).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
also not significant. Finally, the evidence also underscores the fact that FFITs regimes take into account not only the real exchange rate but also the nominal exchange rate. The fact that FFIT countries intervene in the foreign exchange rate markets and thus that none follows a float is compounded by the regression analyses. In more than half of the cases considered, the deviation of the real exchange rate from its trend is statistically significant in explaining the change in the stock of foreign reserves.

5 INTRODUCING THE OPEN ECONOMY DIMENSION IN AN INFLATION TARGETING FRAMEWORK

The empirical evidence presented above is an indication that not only does the exchange rate matter, but that, in fact, in terms of the conventional model presented before, it forms part of the loss function of FFIT central banks. Yet, as will be shown below, the introduction of the exchange rate in the central banks’ loss functions creates important complications for the management of monetary policy within an inflation targeting framework. In fact it can be shown that, with a modified loss function, the core propositions of inflation targeting are inoperative and that the practice of this monetary policy strategy leads to important policy dilemmas, even if one accepts the conventional model.15

Assume that the central bank minimizes a loss function that includes, in addition to the output and inflation gaps and interest rate smoothing, the nominal exchange rate gap. Equation (3.1) is thus modified to yield:

\[L = (y_a - y_n)^2 + \beta (\pi_t - \pi_t^T)^2 + \gamma (i_t - i_{t-1})^2 + \psi (e_t - e^T)^2 \] (5.1)

where \(e_t, e^T_t \) refer to the actual and target nominal exchange rate. In addition, modify the respective constraints so as to include the nominal exchange rate in the Phillips curve and the real exchange rate in the aggregate demand (IS) equation:

\[\pi_t = E_t \pi_{t+1} + \alpha (y_a - y_n) + \omega E_t \Delta e_t \] (5.2)

\[y_g^e_t = -\varphi (i_t - E_t \pi_{t+1}) + E y_g^e_{t+1} + \theta r e_t \] (5.3)

The first order conditions become respectively:

\[\frac{\delta L}{\delta \pi_t} = \beta \pi_t^e - \lambda_1 = 0 \]
\[\frac{\delta L}{\delta y_t^e} = \gamma - \alpha \lambda_1 - \lambda_2 = 0 \]
\[\frac{\delta L}{\delta i_t} = \gamma (i_t - i_{t-1}) - \lambda_2 \theta = 0 \]
\[\frac{\delta L}{\delta e_t} = \psi e_t^e - \lambda_1 \omega = 0 \] (5.4)

15. See Granville and Mallick (2008) and Ncube and Ndou (2011) for attempts to include the exchange rate in an inflation targeting framework for developing economies.
Set the second Lagrangean multiplier (λ_2) to 0, and through successive substitution the value of the first Lagrangean multiplier (λ_1) is seen to be equal to the output, inflation, and exchange rate gaps. The inflation gap ($\beta \pi^g_t$) is not only equal to the opposite sign of the output gap but also to that of the exchange rate. Formally:

$$\lambda_1 = \beta \pi^g_t \Rightarrow \pi_t^g = - \frac{\psi e^g_t}{\omega \beta}$$

This implies that a ‘lean against the wind’ policy is necessarily mediated, in an open economy, by movements in the exchange rate. As such, when the rate of inflation is above target, the central bank must implement a contraction in aggregate demand, so that the output gap is negative. It must also ensure simultaneously that the exchange rate moves in the right direction – that is, that it appreciates to permit the reduction of inflation (inflation enters as an argument in the Phillips curve besides appearing in the loss function). Thus the logic of the model implies that the exchange rate (in this particular case the appreciation of the exchange rate) is an instrument alongside aggregate demand to maintain the rate of inflation in line with its enunciated target.

Both the reduction in prices and the appreciation of the nominal exchange rate translate into an appreciation of the real exchange rate (rer). Thus the reduction of inflation impacts negatively on output through the decline in aggregate demand and via the appreciation of the exchange rate (the external sector) which was required in the first place to reduce inflation. In this sense, the monetary authorities face the dilemma of reducing inflation at the cost of a decline in competitiveness. This presumes that an appreciation does have a significant impact on competitiveness and does lead to an increase in imports (and probably to some decrease in exports) sufficient to constrain growth. The contractionary impact on output can only be compensated by expansionary fiscal policy if there is no external constraint. Note, however, that in the conventional model presented here this is not possible since the economy would be at potential output when inflation is at the target and the rate of interest is at the natural level. Hence the role of fiscal policy, which was ignored in the closed version of the conventional model, must become relevant in the open economy case.

Further, once the exchange rate is introduced in the model, achieving the ‘divine coincidence’ is not a straightforward matter and can become a source of controversy. From Equation (5.2) above it is clear that, if $\pi_t = E_t \pi_{t+1}$, the level of output would not be equal to its natural level, that is, $\frac{\gamma^g_t}{\omega} = 0$. Indeed, even if the monetary authorities reached their inflation target, the output gap would still differ from zero. It would be equal to $\log(E_t \Delta e_t)$. A reduction in the variance of output and inflation is always a possibility if $\pi_t \rightarrow \pi^F$ and $\log(E_t \Delta e_t)$. The ‘divine coincidence,’ in the open economy conventional model, thus requires two conditions: $\pi_t \rightarrow \pi^F$ and $e_t \rightarrow e^F$.

This is itself contradictory. Once again, as with the ‘lean against the wind’ proposition, achieving the ‘divine coincidence’ requires an appreciation of the exchange rate and thus a worsening of the competitiveness, which might undermine the very achievement of the divine coincidence. In an open economy the divine coincidence appears to be impossible, even within the conventional model.

Once the exchange rate is introduced in the loss functions and in the Phillips and aggregate demand curves, it also appears in the interest rate rule of the central bank. Indeed, manipulation of the first order conditions provides two interest rate rules.
The first is the same one as that for a closed economy in which the rate of interest is a function of its past value, the output and inflation gaps. According to the second rule, the interest rate is a function of its past value, the inflation and exchange rate gaps. Formally:

\[i_t = i_{t-1} + \frac{\theta \alpha \beta}{\gamma} \pi_t + \frac{\theta}{\gamma} y_t^g \]

\[i_t = i_{t-1} + \frac{\theta \alpha \psi}{\gamma \omega} e_t^g + \frac{\theta}{\gamma} y_t^g \]

(5.6)

Both rules coincide only if the output gap maintains a given relation with the exchange rate gap (that is, if \(\theta \psi / \gamma \omega e_{t}^g = \beta / \theta \pi_{t}^g \)). In reality, there is no mechanism to ensure this equality, and the most reasonable interpretation is that the central bank has two interest rate rules. More importantly, since the 'divine coincidence' does not apply once the exchange rate is introduced into the loss function, the inflation targeting framework implies necessarily that the central bank has one instrument to achieve three goals: low and stable inflation, full employment output, and exchange rate stability and competitiveness.

Regarding stability, since there are two interest rate rules there are also two possible solutions for stability. The first one, using the interest rate rule without the exchange rate (Equation (5.6)), corresponds to that found for a closed economy. This is explained by the fact that the configuration of the Jacobian determinant is the same. A second possible solution consists of using the interest rule equation with the exchange rate (Equation (5.6)). In this case, the Phillips curve, the aggregate demand curve and the interest rule equation (Equations (5.2), (5.3) and (5.5)) would be insufficient to assess the stability of the system. In fact it can be shown that the Jacobian determinant is equal to 0 and thus that the inflation and output gap equations are linearly dependent.

6 A STYLIZED REPRESENTATION OF THE PRACTICE OF INFLATION TARGETING IN OPEN ECONOMIES

The inoperative nature of the three core propositions of inflation targeting in an open economy materializes in the way in which countries practice inflation targeting ‘de facto.’ To illustrate this point, we analyse to what extent these three propositions (lean against the wind, the divine coincidence, and stability) characterize FFIT countries’ implementation of inflation targeting.

In order to assess whether FFIT countries do or do not lean against the wind, we calculated the correlation coefficient over time between the inflation and the output gap as postulated by Equations (3.6) and (5.5) above.\(^{16}\) A negative and statistically significant coefficient provides an indication that countries practice monetary policy counter-cyclically.\(^{17}\) For analytical purposes we also provide the correlation coefficients

16. Note that the output gap is computed as an average of the actual output method, following conventional approaches of measuring it, and assumes that it is determined by supply side forces as in the conventional model. The results are even more blurred if potential output hysteresis is present, and it is affected by demand management policies.

17. The statistical significance of the correlation coefficient was determined on the basis of the formula: \(\rho = \frac{r \sqrt{n-2}}{\sqrt{1-r^2}} \) where \(r \) is the simple correlation coefficient and \(n \) the number of observations. \(\rho \) follows a student-t distribution.
between the inflation and the nominal exchange rate gaps and that between the output and nominal exchange rate gaps.

The second proposition, the divine coincidence, is tested empirically by the correlation in the variances of the output and inflation gaps. A positive and statistically significant correlation between both variances suggests that the divine coincidence hypothesis cannot be refuted. As the actual rate of inflation narrows its deviation with respect to the inflation gap, the actual level of output tends towards its trend level. As with the case of the ‘lean against the wind,’ we also included the exchange rate in our computations.

Finally, we tried to test for stability of the inflation targeting model consisting of Equations (5.2), (5.3) and (5.6) (the interest rate rule without the exchange rate), by solving it as a system and seeing whether the estimate parameters comply with the stability conditions of a positive Jacobian determinant and a positive trace.

The results show that more than half of the correlation coefficients between the inflation and the output gap, for the countries for which there is available data, are positive and significant (Column (1) in Table 4). In other words, keeping in mind that the policy instrument is the output gap, FFIT countries in their vast majority do not seem to follow the ‘lean against the wind’ optimal monetary strategy consisting of contracting demand below capacity whenever inflation is above its targeted value, and vice versa when inflation is below its target.

A second and interesting piece of evidence is that the relationship between the output gap and the exchange rate is positive (Column (2) in Table 4). That is, a negative deviation of the exchange rate from its trend value (appreciation) is accompanied by a decline of output below capacity. And a positive deviation of the exchange rate from its trend value (depreciation) is accompanied by a rise of output above capacity. This result may reflect the fact that developing countries facing an external constraint, aggravated by competitiveness problems associated with an appreciated exchange rate, are forced to slow down their economies.18

A third piece of evidence relevant to characterizing the practice of inflation targeting is that the majority of countries (59 percent of the total) pass the ‘divine coincidence’ test as shown by the positive and significant correlation between the variance of the output and inflation gaps. This is consistent with the evidence presented in favor of inflation targeting regimes, namely that the inflation rate and its variability is lower in the majority of the cases in the post-FFIT relative to the pre-FFIT period.

An analysis of the evolution of inflation for all FFTI economies shows that this is indeed the case. The median pre- and post-FFIT rate of inflation reached 10 percent and 4 percent for all 27 countries, 4 percent and 2 percent for the developed group, and 8 percent and 5 percent for the developing economies. This result is generally presented as evidence of the success of FFIT regimes. Furthermore, a test of differences in variance for the inflation rate for each of the 27 countries shows that 81 percent

18. Note that there is a vast literature on the positive effects of devaluation on economic growth (for example Rodrik 2008). We do not necessarily suggest that our results corroborate that proposition. Note that the vast majority of studies that find a positive relation between real depreciation and economic growth are very sensitive to both the sample of countries, which may imply sample selection bias, and the measure of devaluation, which is often taken from deviations from Purchasing Power Parity. Our only suggestion is that the exchange rate is connected more to real phenomena associated ultimately with the management of the balance of payments than with anti-inflationary policies.

© 2013 The Author Journal compilation © 2013 Edward Elgar Publishing Ltd
experienced lower inflation variability in the post-FFIT relative to the pre-FFIT period (see Figures 2b and 2c).

However, it is difficult to attribute this to the implementation of inflation targeting since the empirical evidence shows that the majority of the time most FFIT economies

Table 4 The core propositions of inflation targeting in practice for FFIT economies

<table>
<thead>
<tr>
<th>Country</th>
<th>Lean against the wind</th>
<th>Divine coincidence</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>πₖ, yₖ, eₖ</td>
<td>Var(πₖ, yₖ)</td>
<td>Trace J</td>
</tr>
<tr>
<td></td>
<td>πₖ, eₖ</td>
<td>Var(πₖ, eₖ)</td>
<td>DET J</td>
</tr>
<tr>
<td></td>
<td>yₖ</td>
<td>Var(yₖ, eₖ)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>yₖ, eₖ</td>
<td>Var(yₖ, eₖ)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>Armenia</td>
<td>-0.20** -0.30** 0.33**</td>
<td>0.40** -0.35** 0.24**</td>
<td><0 >0</td>
</tr>
<tr>
<td>Australia</td>
<td>-0.13 -0.45** 0.32**</td>
<td>-0.90** 0.72** -0.77**</td>
<td>>0 <0</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.10 0.28** 0.17</td>
<td>0.44** 0.18 0.72**</td>
<td><0 <0</td>
</tr>
<tr>
<td>Chile</td>
<td>0.31** 0.02 0.32**</td>
<td>0.90** -0.18 -0.15</td>
<td><0 >0</td>
</tr>
<tr>
<td>Colombia</td>
<td>0.48** 0.07 0.38**</td>
<td>0.59** 0.08 0.15</td>
<td><0 >0</td>
</tr>
<tr>
<td>Czech</td>
<td>0.02 0.18 0.29**</td>
<td>0.16 -0.64** 0.30**</td>
<td>>0 <0</td>
</tr>
<tr>
<td>Republic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>0.44*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>0.37** 0.13 0.24</td>
<td>-0.67** -0.61** 0.90**</td>
<td>>0 <0</td>
</tr>
<tr>
<td>Iceland</td>
<td>0.72** 0.66** 0.42**</td>
<td>0.53** 0.61** 0.26</td>
<td>>0 >0</td>
</tr>
<tr>
<td>Indonesia</td>
<td>0.07</td>
<td>-0.90**</td>
<td><0 >0</td>
</tr>
<tr>
<td>Israel</td>
<td>-0.18 -0.01 0.27**</td>
<td>0.75** 0.20* 0.58**</td>
<td><0 >0</td>
</tr>
<tr>
<td>Mexico</td>
<td>-0.20 -0.09 0.52**</td>
<td>0.67** 0.91** 0.79**</td>
<td><0 >0</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.20** 0.02 0.61**</td>
<td>0.26** -0.23** -0.17**</td>
<td><0 >0</td>
</tr>
<tr>
<td>Norway</td>
<td>-0.20 0.07 0.11</td>
<td>-0.27* -0.21 0.26*</td>
<td>>0 >0</td>
</tr>
<tr>
<td>Peru</td>
<td>0.23*</td>
<td></td>
<td><0 >0</td>
</tr>
<tr>
<td>Philippines</td>
<td>0.08 -0.06 0.17</td>
<td>0.53** 0.23/0.04 -0.46**</td>
<td><0 <0</td>
</tr>
<tr>
<td>Poland</td>
<td>0.43** -0.01 0.15</td>
<td>0.28** -0.19 0.04</td>
<td><0 >0</td>
</tr>
<tr>
<td>Romania</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serbia</td>
<td>0.41**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>0.51** -0.68** -0.19</td>
<td>-0.73** 0.49** -0.78**</td>
<td>>0 <0</td>
</tr>
<tr>
<td>Korea, Rep.</td>
<td>0.45**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>0.41** 0.06 0.51**</td>
<td>0.88** 0.77** 0.71**</td>
<td><0 >0</td>
</tr>
<tr>
<td>Thailand</td>
<td>0.47**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.02 -0.11 0.63**</td>
<td>0.26** 0.23* 0.04</td>
<td>>0 >0</td>
</tr>
</tbody>
</table>

Notes: ** and * denote significant at the 95% and 90% level of confidence. An increase (decrease) in the real and nominal exchange rate refers to an appreciation (depreciation) of the national currency. The inflation gap was computed as the difference between actual and target inflation (we used two inflation gaps in the case of target inflation tolerance bands). Target inflation was obtained on the basis of Hammond (2012) and on the basis of information provided by the respective central banks of the different countries. All regression analyses included the standard diagnostics which are not presented for want of space. All regression in the systems used to calculate the determinant and trace of the Jacobian matrix were checked for basic goodness of fit indicators. The cases that comply with the stability conditions positive Jacobian determinant and negative trace are highlighted in bold (columns 7 and 8). All computations were performed using quarterly data.

Source: Authors’ own computations on the basis of IMF (2013).
Figure 2 Selected indicators on FFIT performance and the inflation rate and variability for the world. (a) Inflation rate and GDP growth in the pre-FFIT and post-FFIT (averages for all 27 FFITs). (b) Percentage of world countries that experienced lower inflation rate and inflation variability in the period 1996–2012 relative to 1980–1995. (c) Percentage of FFIT countries that have reduced the variability in inflation, GDP growth, nominal and real exchange rates in the post-FFIT relative to the pre-FFIT period. (d) Histogram showing the percentage of time that FFIT countries stay ‘within and on target’.

Note: The F test was computed as $F = \frac{s_1^2}{s_2^2}$ with $H_0: s_1^2 = s_2^2$ vs. $H_1: s_1^2 > s_2^2$ at a 95% confidence level.

Source: Authors’ own computation on the basis of IMF financial statistics data.
do not stay within the announced inflation target range (or near the announced point
target for those economies that do not have an explicitly announced inflation range).
On average, FFIT countries stay on target 40 percent of the time. Also, several coun-
tries that did not adopt an FFIT also had a reduction in inflation levels which may be
attributed to other causes beyond central bank policies, like subdued wage resistance
and increasing external competition.

A more detailed analysis is provided in Figure 2d, which shows a histogram with
the abscissa representing the percentage of the time FFIT countries stay within the
announced inflation target and the ordinates representing the number of countries.
According to Figure 2, only 6 out of the 27 FFIT countries (22 percent) have managed
to stay within the target range for more than 50 percent of the time, and only one has
complied with the target more than 70 percent of the time.

Rather than responding to inflation targeting practices, the occurrence of divine
coincidence is due to two unrelated phenomena. On the one hand, countries across
the world witnessed a reduction in the inflation levels and their variability, with inde-
pendence of their monetary policy regimes, from the middle of the 1990s onwards –
which happens to coincide with the adoption of inflation targeting in all 27 countries
of the sample. An analysis of inflation behavior for a sample of 160 counties worldwide,
using quarterly data from 1980 to 2012, shows that 75 percent of the countries had a
lower rate of inflation in the period 1996–2012 relative to 1980–1995. Similarly more
than 80 percent of the countries in the sample show lower inflation variability in the
latter period relative to the former period.

On the other hand, FFIT countries managed in the majority of cases to narrow the
variance of the output and exchange rate gap jointly (Columns (4) and (6) in Table 4).
In light of the evidence presented in an earlier section, this perhaps indicates that coun-
tries narrowed the output gap through foreign exchange interventions.

Jointly with the fact that the relation between the inflation and exchange rate gap is
mostly insignificant, these findings (Column (3) in Table 4) provide an indication that
the tendency of all the FFIT economies to intervene in the foreign exchange markets
discussed above, rather than being driven by price considerations, responds to real fac-
tors (the deviation of output from its trend level).19 More precisely, we could even
argue that the evidence presented indicates that the interventions in the foreign
exchange market appear to be independent of the course and evolution of inflation,
but not of the evolution of output. Further, it seems reasonable to assume that output
considerations are in many cases related to balance of payments conditions. In other
words, when faced with an external constraint, central banks may be forced to
allow the currency to depreciate and end up missing the inflation target.

This de facto dichotomy between inflation and the exchange rate can create impor-
tant policy dilemmas for the monetary authorities in a context of a simultaneous
increase in inflation and appreciation of the currency. The rise in inflation requires
an increase in the monetary policy rate, if indeed inflation is caused by excessive
demand (as is presumed in the conventional model); but the appreciation of the
currency (which is accompanied by a level of output below capacity – that is, excess
capacity) demands the opposite policy action, namely a decline in the rate of interest.

19. Arguably, the lack of correlation between the exchange rate and inflation gaps may reflect
the fact that pass-through effects are generally lower in the world, and hence the effects of
exchange rate variability on domestic prices has been attenuated (Frankel et al. 2012). This
may reflect lower wage resistance from workers in the context of globalization. That is, depre-
ciation does not lead to wage increases and higher inflation as it did in the 1970s.
This type of policy dilemma explains the reason why, when both events (inflation and appreciation) occur, central banks tend to miss their inflation target: they cannot at the same time increase and decrease the rate of interest.

This type of dilemma can perhaps also be part of the explanation about the mixed evidence for FFIT countries in terms of growth performance. On a country-by-country basis, 15 countries of the entire sample (55 percent of the total) achieved a higher growth rate in the post-FFIT period. For the sub-sample set of developing and developed countries, 3 and 10 economies (or 33 percent and 53 percent of each) experienced higher rates of growth in the post-FFIT period. Similar results are obtained for GDP variability using a difference in variance test on a country-by-country basis (see Figure 2, parts a and c). Note, however, that the rates of growth have accelerated in many countries for reasons that are orthogonal to the monetary regime. For example, there is strong evidence supporting the notion that in Latin America the easing of the external constraint associated with positive terms of trade shock since 2003 is correlated with the growth performance. Equally, many countries have been affected by the Global Crisis that started in 2008, irrespective of their monetary regimes.

Finally, regarding the third core property of stability, the evidence shows that more than half of the countries (54 percent) fail to corroborate it. In other words, the target rate of inflation does not appear to be part of a stable equilibrium configuration.20

As a general remark, it is worth noticing that if one abandons the conventional model assumptions regarding the existence of a supply-constrained potential output, with the concomitant notion of a natural rate of unemployment for which there is little evidence,21 and the notion that inflation is essentially demand-driven, then the very idea of the three core properties of inflation targeting collapse, even in the case of a closed economy, for there would be no such thing as an output gap. Moreover, in an open economy, without a natural rate of unemployment or a potential level of output, the reasons to expect that a central bank could achieve several targets – full employment, price stability, and external competitiveness – with only one instrument, the rate of interest, are even less plausible.

This indicates that central banks with broader policy goals must coordinate with domestic fiscal authorities the management of domestic demand, and that other instruments must complement monetary and fiscal policy in order to achieve all the goals. Industrial policies, import and price management, as well as other income policies which used to be part of the box of tools of developmental governments should not be excluded, a priori, on the basis of a theoretical model that presents, even if one accepts its limited logic, inherent contradictions and significant policy problems.

7 CONCLUDING REMARKS

As we saw, the justification for inflation targeting rests on the closed economy model propositions that central banks lean against the wind, the belief in the divine coincidence suggesting that if the rate of inflation is around its target then output will be at the full employment level, and that following any disturbance to its initial conditions

20. These results represent only a first approximation at the stability issue under inflation targeting.
21. For the discussion of the irrelevance of the natural rate hypothesis, see Galbraith (1997). For the empirical failure of the natural rate hypothesis in the American economy, see Fair (2000).
the system has a tendency to move towards its equilibrium. All these propositions are highly questionable from a theoretical point of view for an open economy, and are not clearly supported by the evidence.

The strategy adopted in this paper was to analyse whether those three propositions could be sustained in the actual countries that implement a fully fledged inflation targeting regime (FFIT). It is noted that even within the mainstream model, once open economy considerations are introduced, the main propositions (lean against the wind, divine coincidence, and stability), based on the evidence of the 27 countries that have explicitly implemented a FFIT regime, do not hold in the real world. Moreover, these countries are open economies and are fundamentally concerned by the evolution of the external sector and the exchange rate, as proven by their interventions in the foreign exchange markets, and external sector considerations can have hierarchical priority over other policy goals. The trade-offs faced by central banks in open economies are significantly more complex than those suggested by the New Consensus model, and reliance on the FFIT regime should be taken with extreme caution, given the unreliability of its empirical results.

REFERENCES

Is inflation targeting operative in an open economy setting? 369

© 2013 The Author Journal compilation © 2013 Edward Elgar Publishing Ltd